Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 88: 415-423, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30872029

RESUMO

The hematopoietic organ (HO) of the giant freshwater prawn Macrobrachium rosenbergii is a discrete, whitish mass located in the epigastric region of the cephalothorax, posterior to the brain. It is composed of hematopoietic cells arranged in a thick layer of numerous lobules that surround a central hemal sinus from which they are separated by a thin sheath. At the center of the sinus is the muscular cor frontale. The lobules extend radially outward from the sinus in three developmental zones. Basal Zone 1 nearest the sinus contains large hematopoietic stem cells with euchromatic nuclei that stain positive for proliferation cell nuclear antigen (PCNA). Zone 2 contains smaller, actively dividing cells as indicated by positive 5-bromo-20-deoxyuridine (BrdU) staining. Distal Zone 3 contains small, loosely packed cells with heterochromatic nuclei, many cytoplasmic granules and vesicles indicating that they will eventually differentiate into hemocytes and enter circulation. Three main arteries, namely the ophthalmic and the 2 branches of the antennary, connect the heart to the HO. Use of India ink and 0.1 µm fluorescent micro-beads injected into the heart revealed that the cor frontale could immediately remove foreign particles from hemolymph by filtration. Fluorescent beads were also detected in the hematopoietic tissue at 30 min after injection, indicating that it could be penetrated by foreign particles. However, the fluorescent signal completely disappeared from the whole HO after 4 h, indicating its role in removal of foreign particles. In conclusion, the present study demonstrated for the first time the detailed histological structures of the HO of M. rosenbergii and its relationship to hematopoiesis and removal of foreign particles from hemolymph.


Assuntos
Sistema Hematopoético/citologia , Sistema Hematopoético/imunologia , Palaemonidae/imunologia , Animais , Proteínas de Artrópodes/química , Células-Tronco Hematopoéticas , Hemócitos/imunologia , Hemolinfa , Palaemonidae/anatomia & histologia , Fagocitose , Antígeno Nuclear de Célula em Proliferação/química
2.
Parasit Vectors ; 11(1): 177, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29530076

RESUMO

BACKGROUND: The microsporidian Enterocytozoon hepatopenaei (EHP) is a spore-forming, intracellular parasite that causes an economically debilitating disease (hepatopancreatic microsporidiosis or HPM) in cultured shrimp. HPM is characterized by growth retardation and wide size variation that can result in economic loss for shrimp farmers. Currently, the infection mechanism of EHP in shrimp is poorly understood, especially at the level of host-parasite interaction. In other microsporidia, spore wall proteins have been reported to be involved in host cell recognition. For the host, heparin, a glycosaminoglycan (GAG) molecule found on cell surfaces, has been shown to be recognized by many parasites such as Plasmodium spp. and Leishmania spp. RESULTS: We identified and characterized the first spore wall protein of EHP (EhSWP1). EhSWP1 contains three heparin binding motifs (HBMs) at its N-terminus and a Bin-amphiphysin-Rvs-2 (BAR2) domain at its C-terminus. A phylogenetic analysis revealed that EhSWP1 is similar to an uncharacterized spore wall protein from Enterospora canceri. In a cohabitation bioassay using EHP-infected shrimp with naïve shrimp, the expression of EhSWP1 was detected by RT-PCR in the naïve test shrimp at 20 days after the start of cohabitation. Immunofluorescence analysis confirmed that EhSWP1 was localized in the walls of purified, mature spores. Subcellular localization by an immunoelectron assay revealed that EhSWP1 was distributed in both the endospore and exospore layers. An in vitro binding assay, a competition assay and mutagenesis studies revealed that EhSWP1 is a bona fide heparin binding protein. CONCLUSIONS: Based on our results, we hypothesize that EhSWP1 is an important host-parasite interaction protein involved in tethering spores to host-cell-surface heparin during the process of infection.


Assuntos
Proteínas de Transporte/isolamento & purificação , Enterocytozoon/patogenicidade , Proteínas Fúngicas/isolamento & purificação , Heparina/metabolismo , Penaeidae/microbiologia , Fatores de Virulência/isolamento & purificação , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Parede Celular/química , Enterocytozoon/química , Enterocytozoon/classificação , Enterocytozoon/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Parasita , Microsporidiose/microbiologia , Filogenia , Esporos Fúngicos/química , Virulência/genética , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Environ Microbiol ; 19(5): 2077-2089, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28345194

RESUMO

Glycolysis and oxidative phosphorylation are the fundamental pathways of ATP generation in eukaryotes. Yet in microsporidia, endoparasitic fungi living at the limits of cellular streamlining, oxidative phosphorylation has been lost: energy is obtained directly from the host or, during the dispersive spore stage, via glycolysis. It was therefore surprising when the first sequenced genome from the Enterocytozoonidae - a major family of human and animal-infecting microsporidians - appeared to have lost genes for glycolysis. Here, we sequence and analyse genomes from additional members of this family, shedding new light on their unusual biology. Our survey includes the genome of Enterocytozoon hepatopenaei, a major aquacultural parasite currently causing substantial economic losses in shrimp farming, and Enterospora canceri, a pathogen that lives exclusively inside epithelial cell nuclei of its crab host. Our analysis of gene content across the clade suggests that Ent. canceri's adaptation to intranuclear life is underpinned by the expansion of transporter families. We demonstrate that this entire lineage of pathogens has lost glycolysis and, uniquely amongst eukaryotes, lacks any obvious intrinsic means of generating energy. Our study provides an important resource for the investigation of host-pathogen interactions and reductive evolution in one of the most medically and economically important microsporidian lineages.


Assuntos
Enterocytozoon/metabolismo , Genoma de Protozoário/genética , Glicólise/genética , Hexoquinase/genética , Interações Hospedeiro-Parasita/fisiologia , Fosforilação Oxidativa , Penaeidae/parasitologia , Animais , Sequência de Bases , Evolução Biológica , Enterocytozoon/genética , Enterocytozoon/patogenicidade , Humanos , Microsporidiose/parasitologia , Filogenia , Análise de Sequência de DNA
4.
DNA Repair (Amst) ; 51: 60-69, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28209516

RESUMO

Nucleotide excision repair (NER) is distinguished from other DNA repair pathways by its ability to process various DNA lesions. In bacterial NER, UvrA is the key protein that detects damage and initiates the downstream NER cascade. Although it is known that UvrA preferentially binds to damaged DNA, the mechanism for damage recognition is unclear. A ß-hairpin in the third Zn-binding module (Zn3hp) of UvrA has been suggested to undergo a conformational change upon DNA binding, and proposed to be important for damage sensing. Here, we investigate the contribution of the dynamics in the Zn3hp structural element to various activities of UvrA during the early steps of NER. By restricting the movement of the Zn3hp using disulfide crosslinking, we showed that the movement of the Zn3hp is required for damage-specific binding, UvrB loading and ATPase activities of UvrA. We individually inactivated each of the nucleotide binding sites in UvrA to investigate its role in the movement of the Zn3hp. Our results suggest that the conformational change of the Zn3hp is controlled by ATP hydrolysis at the distal nucleotide binding site. We propose a bi-phasic damage inspection model of UvrA in which movement of the Zn3hp plays a key role in damage recognition.


Assuntos
Adenosina Trifosfatases/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Dedos de Zinco , Trifosfato de Adenosina/metabolismo , DNA Bacteriano/metabolismo , Hidrólise , Movimento , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA